
Journal of Pharmacological and Toxicological Methods xxx (2015) xxx–xxx

JPM-06260; No of Pages 10

Contents lists available at ScienceDirect

Journal of Pharmacological and Toxicological Methods

j ourna l homepage: www.e lsev ie r .com/ locate / jpharmtox
Appraisal of state-of-the-art
Improvement of acquisition and analysis methods in multi-electrode
array experiments with iPS cell-derived cardiomyocytes
Keiichi Asakura a,b,c,d,e, Seiji Hayashi a,b,e, AtsukoOjima b,f, Tomohiko Taniguchi b,c,d,f,⁎, NorimasaMiyamoto b,c,d,f,
Chiaki Nakamori d,g, Chiho Nagasawa d,g, Tetsuo Kitamura d,h, Tomoharu Osada a,b,h, Yayoi Honda d,i,
Chieko Kasai a,b,j, Hiroyuki Ando a,b,d,k, Yasunari Kanda a,b,l, Yuko Sekino a,b,l, Kohei Sawada a,b,f

a Japanese Safety Pharmacology Society (JSPS), 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
b Japan iPS Cardiac Safety Assessment (JiCSA), 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
c Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association (JPMA), 2-3-11 Nihonbashi-Honcho, Chuo-ku, Tokyo 103-0023, Japan
d Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
e Nippon Shinyaku Co., Ltd., 14, Nishinosho-Monguchi-cho, Kisshoin, Minami-ku, Kyoto 601-8550, Japan
f Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
g Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
h LSI Medience Corporation, 13-4 Uchikanda 1-chome, Chiyoda-ku, Tokyo 101-8517, Japan
i Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-Ku, Osaka 554-0022, Japan
j Astellas Pharma Inc., 2-1-6 Kashima, Yodogawa-ku, Osaka 532-8514, Japan
k Ono Pharmaceutical Co., Ltd., 50-10 Yamagishi Mikuni-cho, Sakaishi, Fukui 913-8538, Japan
l National Institute of Health Sciences (NIHS), 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
⁎ Corresponding author at: Biopharmaceutical Assessme
29 847 5754; fax: +81 29 847 2037.

E-mail address: t2-taniguchi@hhc.eisai.co.jp (T. Tanigu
URL's: http://www.j-sps.org/, http://jicsa.org/, http://c

http://jicsa.org/, http://csahi.org/en/ (T. Taniguchi), http:/
http://csahi.org/en/ (T. Kitamura), http://www.j-sps.org/,
http://www.j-sps.org/, http://jicsa.org/, http://csahi.org/en
http://www.j-sps.org/, http://jicsa.org/ (K. Sawada).

http://dx.doi.org/10.1016/j.vascn.2015.04.002
1056-8719/© 2015 The Authors. Published by Elsevier Inc

Please cite this article as: Asakura, K., et al., Im
derived cardiomyocytes, Journal of Pharmaco
a b s t r a c t
a r t i c l e i n f o
Article history:

Received 30 January 2015
Received in revised form 30 March 2015
Accepted 15 April 2015
Available online xxxx

Keywords:
Action potential
Field potential
High-pass filter
Human induced pluripotent stem cell-derived
cardiomyocytes
Membrane potential dye
Multi-electrode array

Introduction: Multi-electrode array (MEA) systems and human induced pluripotent stem (iPS) cell-derived
cardiomyocytes are frequently used to characterize the electrophysiological effects of drug candidates for the
prediction of QT prolongation and proarrhythmic potential. However, the optimal experimental conditions for
obtaining reliable experimental data, such as high-pass filter (HPF) frequency and cell plating density, remain
to be determined.
Methods: Extracellular field potentials (FPs) were recorded from iPS cell-derived cardiomyocyte sheets by using
the MED64 and MEA2100 multi-electrode array systems. Effects of HPF frequency (0.1 or 1 Hz) on FP duration
(FPD) were assessed in the presence and absence of moxifloxacin, terfenadine, and aspirin. The influence of
cell density on FP characteristics recorded through a 0.1-Hz HPF was examined. The relationship between FP
and action potential (AP) was elucidated by simultaneous recording of FP and AP using a membrane potential
dye.
Results:Many of the FP waveforms recorded through a 1-Hz HPF were markedly deformed and appeared differ-
entiated comparedwith those recorded through a 0.1-Hz HPF. The concentration–response curves for FPD in the

presence of terfenadine reached a steady state at concentrations of 0.1 and 0.3 μMwhen a 0.1-Hz HPF was used.
In contrast, FPD decreased at a concentration of 0.3 μMwith a characteristic bell-shaped concentration–response
curvewhen a 1-Hz HPFwas used. The amplitude of the first and second peaks in the FPwaveform increasedwith
increasing cell plating density. The second peak of the FP waveform roughly coincided with AP signal at 50% re-
polarization, and the negative deflection at the second peak of the FP waveform in the presence of E-4031
corresponded to early afterdepolarization and triggered activity.
Discussion: FP can be used to assess the QT prolongation and proarrhythmic potential of drug candidates;
however, experimental conditions such as HPF frequency are important for obtaining reliable data.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction
Drug-induced QT interval prolongation is a major cause of ventricu-
lar tachycardia such as torsade de pointes, and the majority of drugs
known to induce QT prolongation preferentially target the human
ether-a-go-go-related gene (hERG) channel (Redfern et al., 2003). The
QT prolongation potential of drug candidates is evaluated by preclinical
in vitro IKr (rapid component of delayed rectifier K+ current) assays
and in vivo QT experiments and the clinical “thorough QT/QTc study”.
However, there are often discrepancies between the results obtained
through in vitro IKr assays and those obtained through in vivo QT
experiments, that is, some compounds can give false-negative or
false-positive results for QT prolongation in vivo (Gintant, 2011;
Obiol-Pardo, Gomis-Tena, Sanz, Saiz, & Pastor, 2011). The main reasons
for this are that ion channels other than the hERG channel can be in-
volved in drug-induced QT prolongation, and that some compounds,
such asmulti-channel blockers, do not prolong action potential duration
(APD) (Hayashi et al., 2005; Lu et al., 2008; Martin et al., 2004). There-
fore, screening models for integrated assessment of multiple cardiac
ion channels are expected.

Human cardiomyocytes differentiated from human embryonic stem
cells or induced pluripotent stem (iPS) cells, which physiologically
express multiple cardiac ion channels, have been increasingly used
for the evaluation of drug-induced QT-like-interval prolongation
(Gibson, Yue, Bronson, Palmer, & Numann, 2014; Nozaki et al., 2014;
Peng, Lacerda, Kirsch, Brown, & Bruening-Wright, 2010; Yamazaki
et al., 2012) and the assessment of proarrhythmic potential based on
the analysis of early afterdepolarization (EAD) and triggered activity
(TA) (Nakamura et al., 2014), short-term variability of repolarization
time (Yamazaki et al., 2014), and repolarization delay.

Major technologies for the recording of the electrical activity
of cardiomyocytes include intracellular recordings using sharp or
patch electrodes, extracellular recordings using multi-electrode ar-
rays (MEAs), and optical imaging using voltage-sensitive dyes
(VSDs). Intracellular recording of action potentials (AP) is currently
the ‘gold standard’ method, but it is unsuitable in the early stage of
drug development because it requires qualified technicians and is
laborious and low-throughput. In contrast, extracellular recording
of field potential (FP) by MEA methods or AP measurement using
VSD have intermediate throughput and can easily be installed within
the current screening flow used for the assessment of proarrhythmic
potential.

Since Thomas, Springer, Loeb, Berwald-Netter, and Okun (1972)
first reported the recording of FP in cultured chick embryonic
cardiomyocytes by means of a planar MEA, the theory, recording appa-
ratus, and analytical methods have been further developed, mainly for
analyzing neuronal network activity (Fejtl, Stett, Nisch, Boven, &
Möller, 2006), and these systems are nowwidely used for the detection
of neuronal spikes (Pine, 2006; Spira & Hai, 2013). This technology has
also been used to analyze the propagation of APs in cultured cardiomyo-
cyte sheets or clusters from chick,mouse, or rat by detecting sharp spike
signals derived from the fast influx of sodium ions (INa) during the up-
stroke phase of the AP (Meiry et al., 2001; Egert & Meyer, 2005; Egert
et al., 2006). In these studies, high-pass filters (HPF) at around 1 Hz
were used to eliminate the drift of baseline caused by very low-
frequency electrical signal oscillation. HPFs are implemented by using
a resistance–capacitor circuit, which also acts as a differentiator, and a
HPF with a frequency of 1 Hz will not affect the detection of neural
spikes or the fast depolarization phase of the AP, because the activation
kinetics is within the range of several milliseconds.

FP duration (FPD) is defined as the time interval between the start
of the first sharp deflection in the waveform (Na+-channel activation
during membrane depolarization) to the peak of the second positive
deflection (K+-channel activation during membrane repolarization)
and is considered an index of APD (Meyer, Boven, Günther, & Fejtl,
2004). FPD has been used to evaluate repolarization time in human
Please cite this article as: Asakura, K., et al., Improvement of acquisition an
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cardiomyocytes derived from embryonic stem cells or iPS cells (Harris
et al., 2013; Kaneko et al., 2014; Tanaka et al., 2009). In these studies,
a HPF with a frequency of 1 Hz was used in the detection of the FP
and analyses of the FPD. Because the APs of human cardiomyocytes
have a long plateau phase, FP signals likely contain low-frequency
components around 1 Hz in the plateau and repolarization phases,
and consequently waveforms obtained by using a 1-Hz HPF may be
altered compared with the raw waveform.

Because the utilization of human cardiomyocytes for the assessment
of QT prolongation and proarrhythmic potential is becoming important,
as indicated by the Comprehensive in vitro Proarrhythmia Assay (CiPA)
proposal to evaluate proarrhythmic risk based on mechanistic electro-
physiologic understanding of proarrhythmia (Cavero, 2014; Cavero &
Holzgrefe, 2014, Sager, Gintant, Turner, Pettit, & Stockbridge, 2014), a
higher quality of experimental data and interpretation are now needed.
MEA-based assays are already being used in drug screening; however,
there are limited reports on the theory and optimal experimental condi-
tions for using this technology for the assessment of the AP repolariza-
tion phase in cardiomyocyte sheets.

Here, the Japanese Safety Pharmacology Society (JSPS), Consor-
tium for Safety Assessment using Human iPS Cells (CSAHi), and
Japan iPS Cardiac Safety Assessment (JiCSA) have jointly conducted
a series of MEA-based experiments using iPS cell-derived cardio-
myocytes to examine the effects of HPF filtering and cell plating
density on the assessment of proarrhythmic potential. TwoMEA sys-
tems, MED64 (Alpha MED Scientific) and MEA2100 (MC_Rack, Multi
Channel Systems), were used. In addition, the relationship between
FP and AP was examined by simultaneously recording FPs and APs
by using a VSD.
2. Methods

2.1. Cell culture and plating

Cryopreserved human iPS cell-derived cardiomyocytes (iCells
Cardiomyocytes; Cellular Dynamics International, Madison, WI, USA)
were obtained and prepared according to the manufacturer's protocol.
Briefly, the cells were immediately thawed in iCell Cardiomyocytes
Plating Medium (Cellular Dynamics International) and then plated
(approximately 2.5 × 106 cells/well) on 6-well tissue-culture plates
(Becton Dickinson, Franklin Lakes, NJ, USA; Asahi Glass Inc., Tokyo,
Japan; Sumitomo Bakelite Co., Ltd., Tokyo, Japan), which were coated
with 0.1% gelatin. Two days after plating, the plating medium was
replaced with iCell Cardiomyocytes Maintenance Medium (Cellular
Dynamics International). The maintenance medium was used as the
culture medium throughout the experiments and was replaced every
2 days. The cells were cultured for 5 to 7 days at 37 °C under an atmo-
sphere of 5% CO2 and then re-plated onto multi-electrode probes.

The recording areas of multi-electrode probes (MED64 probe:
MED-P515A; Alpha Med Scientific, Osaka, Japan; MEA2100 probes:
60MEA200/30iR-Ti-gr and 6-well MEA200/30iR-Ti-tcr; Multi Channel
Systems, Reutlingen, Germany) were coated with 2 μL of fibronectin
(50 mg of fibronectin in 1 mL of distilled water or Dulbecco's
phosphate-buffered saline [−]) and incubated at 37 °C for at least 1 h.
The cells cultured in the 6-well tissue-culture plates were dispersed
with 0.25% trypsin–EDTA or TrypLE Select (Invitrogen, Carlsbad, CA,
USA), re-plated onto the multi-electrode probes at a density of 1.5 to
3.0 × 104 cells in 2 μL of culture medium, and incubated for 1 to 3 h at
37 °C under an atmosphere of 5% CO2. Each well was then filled with
culture medium at a volume of 0.25 mL/well for 6-well MEA2100
probe, 1 mL/well for single-well MEA2100 probe, and 2 mL/well
for single-well MED64 probe, which was replaced every 2 to 3 days
thereafter, and the cells cultured for a further 6 to 17 days to obtain a
sheet of cardiomyocytes with spontaneous and synchronous electrical
automaticity.
d analysis methods inmulti-electrode array experiments with iPS cell-
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2.2. Drugs and chemicals

E-4031 was obtained from Wako Pure Chemical Industries (Osaka,
Japan) or synthesized at Eisai Co., Ltd. (Tsukuba, Japan). Aspirin was
purchased from Wako Pure Chemical Industries, terfenadine from
Sigma-Aldrich (St. Louis, MO, USA), and moxifloxacin from Fluka
(Tokyo, Japan). Gelatin was obtained from Sigma-Aldrich. Fibronectin
was obtained from Becton Dickinson and Invitrogen.

2.3. Recording of FPs

Prior to recording FPs, the cardiomyocyte sheets were equilibrated
for at least 30 min in a CO2 incubator in fresh culture medium. After
equilibration, the probes were transferred to FP measurement appara-
tus and covered with a lid through which a gas containing 5% CO2 was
provided and kept at 36.5 to 38.0 °C. Analogue FP signals from the spon-
taneously beating cardiomyocyte sheets were acquired through a 0.1-
Hz HPF and a 3.5- to 10-kHz low-pass filter and digitized at 20 kHz by
using a MED64 (Alpha Med Scientific) or MEA2100 multi-electrode
array system (MC_Rack, Multi Channel Systems). To compare FP wave-
forms recorded through 0.1-Hz and 1-Hz HPFs, waveforms were first
recorded through a 0.1-Hz HPF for 1 min, and then the frequency of
the HPF was changed to 1-Hz and the waveforms were again recorded
from the same preparation. To examine the effects of the 1-Hz HPF on
the drug concentration–response curve for FPD, the experiments were
conducted using a 0.1-Hz HPF, after which the waveforms were passed
through a 1-Hz HPF off-line and used as data obtained through a 1-Hz
HPF. The stability and constancy of the waveforms, inter-spike interval,
and FPD were confirmed for at least 20 min before adding vehicle or
compound solutions. Compound stock solutionsweremade in dimethyl
sulfoxide at 1000-fold the target concentration and were cumulatively
added to the wells at one-thousandth volume. The final concentration
of dimethyl sulfoxide was 0.5%. At each concentration, FP waveforms
were recorded for at least 10 min and the last 30 beats were used as
the dataset for the analyses. Compounds tested were E-4031 (1, 3, 10,
and 30 nM), terfenadine (0.01, 0.03, 0.1, and 0.3 μM), moxifloxacin
(10, 30, 100, and 300 μM), and aspirin (3, 10, 30, and 100 μM). For strong
biphasic electrical pulse stimulation of the cardiomyocytes, a single
squarewave (0.6msec; 30–40 μA)was delivered from two bipolar elec-
trodes of 64 electrodes probes in the MED64 system.

2.4. FP data analysis

Baseline FP waveforms with a sharp first positive or negative de-
flection and a second positive deflection that met the following
criteria were used for analysis: first positive or negative peak
amplitude ≥±200 μV, second peak amplitude ≥15 μV, inter-spike in-
terval b1715 msec, and FPDcF ≥340 msec. After recording the FP
waveforms, the amplitude of the initial sharp positive and negative de-
flection (first peak; μV), amplitude of the secondary slower positive de-
flection (second peak; μV), FPD (msec), and inter-spike interval (msec)
were measured and the data analyzed by using the Mobius QT (ver.
0.5.0, Alpha MED Scientific) and LabChart (ver. 7.3.7 AD Instruments,
Colorado, CO, USA) software. FPD was defined as the interval between
the start of the first sharp deflection in the waveform to the peak of
the second positive deflection. FPD was corrected for beating rate
with Fridericia's formula (FPDcF = FPD / [inter-spike interval /
1000]1/3). The inter-spike interval and FPDcF of the last 30 waveforms
at each experimental concentration were averaged. In the FP signals,
EAD was defined as relatively slow negative spikes appearing during
the second positive deflection (repolarization phase), and TA was de-
fined as one or more FP signals following EAD with a sharp positive or
negative deflection and an amplitude ≥ ±100 μV. When EAD or TA
was observed, the data at this concentration were excluded from the
statistical analysis.
Please cite this article as: Asakura, K., et al., Improvement of acquisition an
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2.5. Imaging of VSD signals

Cardiomyocytes plated on MED64 probes were stained by using a
FluoVolt Membrane Potential Kit (Life Technologies, Carlsbad, CA,
USA). Briefly, voltage-sensitive FluoVolt dye was diluted 1:10 with
PowerLoad concentrate and mixed with a vortex mixer. The mixture
was then further diluted 1:10 with Dulbecco's phosphate-buffered sa-
line (−) and used as 1000× loading dye. The loading dye was added
to the culture medium and the cells were incubated for 15 to 20 min
at 37 °C under an atmosphere of 5% CO2 on the stage of an inverted fluo-
rescence microscope (IX71, Olympus, Tokyo, Japan). Confocal images
were acquired through a 30× silicone oil immersion objective (numeric
aperture, 1.05; working distance, 0.8 mm). Membrane staining was vi-
sualized with a Sapphire 488 HP Laser System (Coherent, Inc., Santa
Clara, CA, USA) by using standard fluorescein isothiocyanate filter set-
tings (excitation, none; emission, 520/35). Images were recorded with
an exposure time of 10.35msec at 94 frames per secondwith a confocal
scanner (CSU-W1, Yokogawa Electric Cooperation, Tokyo, Japan) and an
EMCCD camerawith 512× 512 active pixels (DU897, Andor Technology
Ltd., Belfast, UK), and then analyzed by using the Andor iQ (ver. 2.9.1,
Andor) and Csu-Pro (ver. 3.0, LUCIR Inc., Ibaraki, Japan) software. All
of the microscopy equipment and most of the scanner were enclosed
within a transparent cover (Tokken, Inc., Chiba, Japan) to prevent fluc-
tuations in internal temperature, humidity, and CO2 concentration.

2.6. Statistical analysis

Data are presented as mean ± SEM. The effects of E-4031 on APD
and FPD were analyzed with the Prism 6.02 software (GraphPad,
La Jolla, CA, USA). Statistical analysis was performed by using paired
t-test. P b 0.05 was considered statistically significant.

3. Results

3.1. Background of MEA-based recording of FP and AP-like signals

A multi-electrode array can be used to detect changes in the extra-
cellular voltage of a cardiomyocyte sheet, because the slow diffusion
of ions between the cleft and bulk solutions means that the electrode
array will detect only changes in current (Iseal) flowing through Rseal

within the cleft as described in Fig. 1A. Because cardiomyocytes are
smaller in size than the electrode (see Fig. 5A) and because they are
tightly connected via gap junctions, each electrode in the array detects
the changes in voltage of several cardiomyocytes. The degree of contact
between the cardiomyocyte sheet and the electrode greatly affects the
accuracy of the FP waveforms recorded (Fig. 1B). When the resistance
of the seal formed between the cell sheet and the electrode is high
enough for the electrical circuit between the cell sheet and electrodes
to be regarded as a simple resistance–capacitor circuit, it is theoretically
possible to record waveforms that are similar to those produced by re-
cording AP intracellularly. In the present study, wewere able to convert
FP signals into AP-like signals during basal measurement by applying a
strong electrical pulse to the electrode to make the plasma membrane
slightly leaky (Fig. 1C). These AP-like signals were recorded only when
a 0.1-Hz HPF was used.

3.2. Effect of HPF frequency on FP waveform

FP waveforms were recorded from the same cardiomyocyte prepa-
ration through a 0.1- or 1-Hz HPF (Fig. 2). Typical FP waveforms and
AP-like waveforms were observed when a 0.1-Hz HPF was used
(Fig. 2A); however, only FP waveforms were observed when a 1-Hz
HPF was used (Fig. 2B). Although the waveforms recorded by some of
the electrodes were similar irrespective of the HPF used (Fig. 2C, elec-
trode No. 4), the waveforms recorded by others markedly differed
depending on the HPF used (Fig. 2C, electrodes No. 5 and No. 47). For
d analysis methods inmulti-electrode array experiments with iPS cell-
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Fig. 1. Schematic layout showing the spatial relationship between the cardiomyocyte cell sheet, a substrate-integrated electrode, and the passive analogue electrical circuit. (A) The car-
diomyocyte sheet (blue) resides on a sensing electrode (orange) integrated in the culture substrate (yellow). The electrode is coupled to an amplifier. A cleft filled with culture medium
(ionic solution) interposes between the cell membrane and the electrode–substrate. The cardiomyocyte plasmamembrane can be divided into two parts: the part that faces the electrode
is defined as the junctional membrane and is represented by the junctional membrane resistance (Rj) and the junctional membrane capacitance (Cj). The rest of the membrane, which is
defined as thenon-junctionalmembrane, faces the bathing solution and the culture substrate. This part of themembrane is represented by the non-junctional resistance (Rnj) and thenon-
junctional capacitance (Cnj) (gray). The physiological solution within the cleft generates the seal resistance (Rseal) to ground (GND). Electrode impedance is represented by the electrode
resistance (Re) and electrode capacitance (Ce). The electrode can be a passive element or a transistor. The action potential (AP) is conducted into the analogue cell-circuit in-between Rnj

and Rj. (B) Under physiological conditions, AP is generated by transient changes in the membrane conductance and the electrode detects the field potential (FP). (C) AP-like waveforms
were recorded by biphasic electrical stimulation from the same electrode shown in (B), which had extracellular FP signals. Note that, overall, the amplitude of AP-like waveforms reduced
over time and the duration of the occurrence of the AP-likewaveforms depended on the individual cardiomyocyte sheet, despite the same conditions being used for electrical stimulation.
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example, in the waveform recorded by electrode No. 5, the second peak
was absent when a 0.1-Hz HPF was used, but present when a 1-Hz HPF
was used, indicating that the FPD differed depending on the frequency
of the HPF. Similarly, although the waveform recorded by electrode
No. 47 was AP-like when a 0.1-Hz HPF was used, it was markedly
deformed with a large negative deflection in the second peak when a
1-Hz HPF was used.

3.3. Effect of HPF frequency on FP waveforms recorded in the presence of a
drug

The effects of aspirin, terfenadine, moxifloxacin, and dimethyl sulf-
oxide on FPDcF were examined to investigate whether HPF frequency
affected the concentration–response curve (Fig. 3A–D). Application of
aspirin and dimethyl sulfoxide had no remarkable effect on any of
the parameters recorded through a 0.1-Hz or 1-Hz HPF (Table 1).
Moxifloxacin prolonged FPDcF and slightly decreased the beating rate
and first and second peak amplitude in a concentration-dependent
Please cite this article as: Asakura, K., et al., Improvement of acquisition an
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manner irrespective of the HPF used. The average rate of FPDcF prolon-
gation (vs. basal control) when recorded through a 0.1-Hz or 1-Hz HPF
was 5.9% and 5.9%, respectively, at 10 μM, 15.8% and 14.0% at 30 μM, and
42.7% and 35.7% at 100 μM. Terfenadine prolonged FPDcF, and the aver-
age rate of FPDcF prolongation (vs. basal control) when recorded
through a 0.1-Hz or 1-Hz HPF was 5.9% and 6.9%, respectively, at
0.01 μM, 11.9% and 13.6% at 0.03 μM, 18.2% and 14.2% at 0.1 μM, and
16.4% and 4.0% at 0.3 μM. The concentration–response curve for first
peak amplitude in the presence of terfenadine was decreased in a
dose-dependent manner, and that for second peak amplitude was
bell-shaped. The changes in the concentration–response curves, except
for those in the concentration–response curve for FPDcF in the presence
of terfenadine, were similar irrespective of the HPF used. Comparable
results were obtained when FPD was corrected using Bazett's formula
(data not shown). In addition, compared with when a 1-Hz HPF was
used, the second peak in the FP waveform when a 0.1-Hz HPF was
used became increasingly flattenedwith increasing terfenadine concen-
tration (Fig. 3E).
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(A) 0.1 Hz HPF   (B) 1 Hz HPF

(C) Typical waveforms from different  electrodes
Electrode No4               Electrode No5                Electrode No47

HPF 0.1 Hz

HPF 1 Hz

Fig. 2. Field potential waveforms of iPS cell-derived cardiomyocytes plated at a density of 30,000 cells/2 μL were recorded with a MED64 multi-electrode array system (Alpha Med
Scientific, Osaka, Japan) through a 0.1-Hz (A) or 1-Hz (B) high-pass filter (HFP). After recording the waveforms through a 0.1-Hz HPF for 1min (A), the frequency of the HPFwas changed
to 1 Hz and the waveforms were again recorded from the same preparation (B). (C) Typical waveforms of different shapes observed in (A) and (B).

5K. Asakura et al. / Journal of Pharmacological and Toxicological Methods xxx (2015) xxx–xxx
3.4. Effect of cell density on FP parameters and response to E-4031

The effect of cardiomyocyte plating density (15,000, 20,000, or
25,000 cells/2 μL/well) on several FP parameters was examined.
The number of electrodes that fulfilled the criteria of first peak
amplitude ≥±200 μV and secondpeak amplitude ≥15 μVwas increased
with increasing cell density (Fig. 4A). The average amplitude of both the
first and second peaks also increased as cell density increased. Beating
rate significantly decreased at a plating density of 15,000 cells, whereas
FPDcF was comparable at all three plating densities examined. The con-
centration–response curves for beats perminute and FPDcF, and the in-
cidence of EAD or TA, in the presence of E-4031 (IKr-specific blocker)
were analyzed by using waveforms that fulfilled the above criteria
under basal conditions and had a shape similar to that shown in
Fig. 2C (electrode No 4.) No differences in the concentration–response
curves or the incidence of EAD or TA were seen at any of the cell plating
densities or concentrations of E-4031 examined (Fig. 4B, C, and D). Fur-
thermore, the application of E-4031 had no effect on first peak ampli-
tude (control, 3281.9 ± 193.6 μV vs. 10 nM of E-4031, 3239.1 ±
163.4 μV).
3.5. Relationship between FP and AP as assessed by using a VSD

To investigate the relationship between FP and AP in the presence of
E-4031, we simultaneously recorded the FP and AP of cardiomyocytes
plated on an MED probe by using a VSD optical imaging system and
the MED64 multi-electrode array system. VSD imaging showed that
the cardiomyocytes were heterogeneous in size and much smaller
than the electrodes in the array (Fig. 5A). Because the fluorescence in-
tensity of the cell membrane was stronger than that of the intracellular
domain, the tight association of the cardiomyocytes was confirmed.
Although FPD is defined as the time between the start of the first
sharp deflection and the peak of the second positive deflection in
Please cite this article as: Asakura, K., et al., Improvement of acquisition an
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the FP waveform, the relationship between the second peak in the FP
waveform and the repolarization phase of the AP is yet to be fully char-
acterized. Therefore, we simultaneouslymeasured APD at 20%, 50%, and
90% repolarization (c, APD50, and APD90), and FPD before and after the
addition of 20 nM of E-4031 (the concentration at which APD and FPD
were prolonged and EADs were evoked) (Fig. 5B). FPD under basal con-
ditions was comparable to APD50. The presence of E-4031 significantly
prolonged both APD90 (P b 0.05) and FPD (P b 0.001), but not APD20

and APD50. Next, waveformswere recorded under spontaneous activity
and after the addition of 20 or 60 nM of E-4031 (Fig. 5D–E). In the early
period after the application of 20 nM of E-4031 (Fig. 5D, left), a single
EADwas induced in theAP and a small negative deflection in the second
peak was observed in the FP waveform. As exposure time increased
(Fig. 5D, right), TA began to appear after the EAD. The addition of
60 nM of E-4031 evoked multiple TA after the EAD in the AP waveform,
which corresponded to multiple, sharp negative deflections in the FP
waveform.
4. Discussion

4.1. Brief summary

Here we explored the effects of several experimental conditions,
including HPF frequency and cell density, to examine whether an MEA
system can be used to record high-quality FP data from iPS-derived
cardiomyocyte sheets. The relationship between FP and AP was also
examined by means of simultaneous measurement of FP and AP. The
major findings of this study were as follows: 1) use of a 0.1-Hz HPF
caused minimal distortion of the FP waveforms, whereas the use of a
1-Hz HPF in some instances caused marked distortion. Because this
distortion may cause misinterpretation of which compounds inhibit
hERG channels and induce the depression of the second peak in the FP
waveform, HPF frequency was critical for recording accurate FP
d analysis methods inmulti-electrode array experiments with iPS cell-
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Fig. 3. Comparison of the effect of drug response on field potential duration (FPD) corrected with Fridericia's formula (FPDcF) recorded through a 0.1-Hz or 1-Hz high-pass filter (HPF).
Concentration–response curves for (A) aspirin (n= 7), (B) terfenadine (n= 4), (C) moxifloxacin (n= 6 for vehicle and at 10 μM, n= 5 at 30 μM, n= 4 at 100 μM; the size of the dataset
was decreased at higher concentrations due to the occurrence of early afterdepolarization), and (D) dimethyl sulfoxide (n= 4). Cells were plated at a density of 15,000 cells/2 μL/well on
one of the single-well or 6-wellMEA2100 probes and thefield potential (FP)waveformswere recorded through a 0.1-HzHPF for 10min after application of vehicle (control, 0.1% dimethyl
sulfoxide) and then during the cumulative addition of each drug to the required concentrations. Awaveform thatwas similar in shape to that shown in Fig. 2C electrodeNo. 4was used for
analysis. Thewaveforms recorded through a 0.1-HzHPFwere passed through a 1-HzHPF off-line and used as thedata obtained througha 1-HzHPF. Average FPDcFwas calculated from the
last 30 FPDs during the 10-min recording at each concentration. Data are presented asmean± SEM for HPF 0.1-Hz (●) and 1-Hz (△). (E) Typical FPwaveforms obtained through a 0.1-Hz
and a 1-Hz HPF. Representative FP waveforms obtained through a 0.1-Hz HPF were passed through a 1-Hz HPF off-line without the presence of drug (upper panel) and with 0.3 μM
terfenadine (lower panel). Note that the second peak of FP waveform in the presence of terfenadine was shifted to the left at 1-Hz HPF was used.
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waveforms. 2) A higher density of cells on the MEA electrode produced
FP waveforms with higher peak amplitudes and a higher number of
electrodes that passed our criteria for inclusion in the analysis of com-
pound effects. 3) FPD at basal conditions corresponded to APD50, as
assessed by means of a VSD assay, and therefore FPD could be used as
a reliablemarker of APD. The amplitude and shape of the small negative
deflection in the second peak appearing in the FP waveform after drug
treatment may be used to discriminate between EAD and TA. 4) When
a 0.1-Hz HPF was used, it was possible to record AP-like waveforms
without any additional treatment or the application of strong electrical
pulses; therefore, these AP-like waveforms may potentially be used to
support the interpretation of changes in FP. In conclusion, it is likely
that MEA-based experiments using iPS-derived cardiomyocytes to
Please cite this article as: Asakura, K., et al., Improvement of acquisition an
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evaluate QT prolongation and proarrhythmic potentials would be
much improved if these findings were taken into account.

4.2. Effect of HPF frequency on FP waveform

A phase shift in the input signal pulsemay occur as it passes through
the differentiation circuit; therefore, extracellular FP signals recorded
with anMEA system through aHPFwill show characteristics of differen-
tiation. Commercially available MEA systems such as the MED64 and
MEA2100 systems used in the present study use a resistance–capacitor
circuit as the HPF in their amplifier (MED64 [Butterworth filter] vs.
MEA2100 [Bessel filter]). In the present study, the shape of the second
peak was influenced by the HPF when the frequency of the HPF was
d analysis methods inmulti-electrode array experiments with iPS cell-
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Table 1
Effects of test drugs on beat rate, corrected field potential duration with Fridericia's fomula (FPDcF), and first and second peak amplitude.

Drug Concentration n Beat rate (beats/min) FPDcF (msec) First peak amplitude (μV) Second peak amplitude
(μV)

EAD/TA

HPF 0.1 Hz HPF 1 Hz HPF 0.1 Hz HPF 1 Hz HPF 0.1 Hz HPF 1 Hz HPF 0.1 Hz HPF 1 Hz

Aspirin 0 μM 7 60.4 ± 1.9 60.6 ± 1.7 409.8 ± 4.6 400.9 ± 4.3 2625 ± 591 2613 ± 582 33.7 ± 4.5 40.2 ± 4.4
3 μM 7 60.0 ± 1.8 60.0 ± 1.8 417.7 ± 2.4 408.1 ± 2.2 2672 ± 679 2670 ± 679 32.7 ± 4.9 38.4 ± 5.4
10 μM 7 60.0 ± 2.0 60.0 ± 2.0 417.4 ± 1.9 409.5 ± 2.0 2701 ± 739 2704 ± 738 33.0 ± 5.1 39.8 ± 5.9
30 μM 7 60.2 ± 2.3 60.2 ± 2.3 422.0 ± 3.0 413.8 ± 3.2 2782 ± 701 2785 ± 701 30.4 ± 6.5 37.6 ± 5.5
100 μM 7 60.7 ± 2.5 60.7 ± 2.5 421.9 ± 3.2 413.1 ± 3.6 2546 ± 736 2547 ± 735 32.2 ± 4.4 37.7 ± 5.3

Terfenadine 0 μM 4 56.0 ± 0.8 56.0 ± 0.8 406.7 ± 7.0 399.5 ± 7.8 2764 ± 327 2765 ± 327 48.2 ± 9.6 59.0 ± 12.2
0.01 μM 4 53.1 ± 1.4 53.1 ± 1.4 436.8 ± 11.3 426.9 ± 11.8 3150 ± 420 3139 ± 415 60.8 ± 12.3 62.7 ± 13.2
0.03 μM 4 52.2 ± 1.6 51.8 ± 1.6 467.3 ± 16.3 454.1 ± 15.1 2831 ± 392 2849 ± 381 71.7 ± 11.2 64.2 ± 13.0
0.1 μM 4 51.6 ± 1.8 51.6 ± 1.8 499.2 ± 20.8 456.4 ± 17.3 2078 ± 455 2077 ± 454 60.7 ± 9.1 55.7 ± 13.5
0.3 μM 4 52.9 ± 0.9 52.9 ± 0.9 489.4 ± 5.3 415.1 ± 9.0 1114 ± 249 1155 ± 234 45.8 ± 9.2 55.5 ± 10.6

Moxifloxacin 0 μM 6 52.5 ± 1.2 52.5 ± 1.2 452.4 ± 13.3 442.8 ± 11.4 1979 ± 453 1977 ± 453 43.6 ± 12.2 48.0 ± 7.4
10 μM 6 52.7 ± 1.9 52.7 ± 1.9 478.6 ± 12.6 468.6 ± 11.6 1800 ± 375 1796 ± 376 41.0 ± 11.3 44.4 ± 7.3
30 μM 5 55.0 ± 2.6 55.0 ± 2.6 523.3 ± 23.0 503.5 ± 19.0 1165 ± 189 1162 ± 190 36.9 ± 12.0 45.7 ± 7.9 EAD (1/6 samples)
100 μM 4 47.4 ± 3.5 47.4 ± 3.5 628.9 ± 31.4 587.9 ± 24.9 1326 ± 635 1327 ± 635 34.4 ± 10.2 34.5 ± 6.7 EADs (2/6 samples)
300 μM 0 n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. EADs (6/6 samples)

Dimethyl sulfoxide 0 % 4 48.1 ± 1.3 48.0 ± 1.3 448.1 ± 8.2 439.8 ± 6.1 1768 ± 240 1745 ± 227 25.6 ± 7.5 28.1 ± 7.2
0.1 % 4 49.8 ± 1.2 49.8 ± 1.2 450.8 ± 9.3 442.8 ± 8.1 2261 ± 464 2262 ± 464 26.1 ± 7.3 27.3 ± 7.8
0.2 % 4 49.3 ± 1.5 49.3 ± 1.5 460.1 ± 8.4 453.4 ± 6.4 1815 ± 314 1813 ± 314 26.5 ± 7.7 26.7 ± 8.1
0.3 % 4 49.7 ± 1.6 49.7 ± 1.6 463.2 ± 8.5 456.1 ± 6.5 1965 ± 425 1964 ± 426 25.1 ± 6.7 26.2 ± 8.4
0.4 % 4 50.3 ± 1.4 50.3 ± 1.4 467.5 ± 9.2 459.5 ± 7.5 1799 ± 512 1799 ± 512 24.5 ± 6.4 25.2 ± 8.4
0.5 % 4 50.3 ± 1.9 50.3 ± 1.9 467.1 ± 12.5 462.5 ± 10.2 2008 ± 658 2008 ± 659 23.3 ± 6.3 24.1 ± 8.6

Data are presented as mean ± SEM.
Control data (0 concentration) for aspirin, terfenadine, and moxifloxacin recorded by using vehicle (0.1% dimethyl sulfoxide).
EAD, early afterdepolarization; HPF, high-pass filter; n.c., not calculated; and TA, triggered activity.
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1st peak amplitude (µV) 1683.2** 2371.2** 3281.9

2nd peak amplitude (µV) 21.7** 32.0 31.2

FPDcF 396.2 412.9 390.1

Beating rate (bpm) 60.1** 50.7 49.2
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Fig. 4. Effect of cardiomyocyte plating density on field potential (FP) parameters and response to E-4031. Cells were plated ontoMED64multi-electrode array probes at 15,000, 20,000, or
25,000 cells/2 μL/well (n = 3) and FP waveforms were recorded 7 days after plating. The average of each parameter was obtained by using 30 consecutive waveforms recorded after
reaching a stable experimental condition. (A) Number of electrodes fulfilling the criteria first peak amplitude ≥ ±200 μV and second peak amplitude ≥15 μV, and the amplitude of the
first and second peak calculated by using data obtained from 48 electrodes that recorded waveforms similar to that shown in Fig. 2C electrode No. 4. (B) The effects of E-4031 on FP du-
ration corrected with Fridericia's formula (FPDcF) between different plating densities of cells (15,000, 20,000, or 25,000 cells/2 μL/well) were examined by cumulative application of E-
4031 for 10min at each concentration. The last 30 FPwaveforms recordedwere used for the analysis of beats perminute and FPDcF. (C) Incidence of early afterdepolarization or triggered
activity (EAD/TA) during 10 min application of E-4031. **Paired t-test, P b 0.01 vs. 25,000 cells/2 μL/well.
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Fig. 5. Simultaneous measurement of field potential (FP) and action potential (AP) by using a voltage-sensitive dye (FluoVolt). Cells were plated at a density of 30,000 cells/2 μL onto
MED64 multi-electrode array probes and cultured for 16 or 17 days. (A) Cells were treated with FluoVolt for 15 min and imaged under a fluorescence microscope with a 30× silicon
oil immersion objective. FP waveforms were recorded through a 0.1-Hz high-pass filter on a MED64 multi-electrode array system, and AP waveforms were recorded as a FluoVolt fluo-
rescence signal. (B) Effects of the addition of 20 nM of E-4031 to the culture medium on AP duration (APD) at 20%, 50%, and 90% repolarization (APD20, APD50, APD90), and FP duration
(FPD), prior to the occurrence of early afterdepolarization (EAD) (n = 3). FPD and APD were measured in three corresponding FP and AP waveforms. Values are presented as mean ±
SEM. *P b 0.05, ***P b 0.001 compared with the control values. Typical corresponding waveforms under conditions of (C) spontaneous activity, (D) E-4031 at 20 nM (left, initial phase
of EAD induction; right, 6 min after EAD induction), and (E) E-4031 at 60 nM on AP and FP.
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high (i.e., 1 Hz), because the second peak contained the slow compo-
nents of the current (Figs. 2 and 3). Thus, the FP waveform recorded
through the 1-Hz HPF was strongly affected by the differentiator circuit
in the MEA amplifier compared with that recorded through the 0.1-Hz
HPF, leading to peak attenuation and a phase shift in the waveform
(Fig. 3E). In addition, negative waveforms after second peak were
often observed when a 1-Hz HPF was used. However, since these nega-
tive waveforms after second peak were not observed when a 0.1-Hz
HPF was used, it is likely that they were artifacts created by the resis-
tor–capacitor circuit differentiation.

As shown in Fig. 2C (electrode No. 4), when the amplitude of the
second peak was sufficiently large and sharp, similar waveforms were
obtainedwhether a 0.1- or 1-Hz HPFwas used. However, when the am-
plitude of the second peak was small (e.g., electrode No. 5) the wave-
forms were strikingly different between the two frequencies of HPF;
indeed, in the waveform detected by electrode No. 5, when a 1-Hz
HPF was used the second peak was observed, but when a 0.1-Hz HPF
was used the second peak was not observed, which may be due to the
differentiator circuit in the MEA amplifier. Concerns related to the
differentiation associated with HPFs become an issue when attempting
to evaluate the effects of a drug.When terfenadinewas added to the cul-
ture medium (Fig. 3C), there was a marked difference in the concentra-
tion–response curves recorded through the 0.1- and 1-Hz HPFs. This
may be a result of a phase shift when the 1-Hz HPF was used (Fig. 3E).
For the negative plateau potential between the first and second peaks,
it is likely that the FP waveforms recorded through a 0.1-Hz HPF reflect
Please cite this article as: Asakura, K., et al., Improvement of acquisition an
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inward currents such as ICa (calcium current) and INCX (sodium–calcium
exchange current) unlike those recorded through a 1-Hz HPF. Since FP
waveforms can be considered a composite representation of the mem-
brane potential and several ionic currents, a future challenge will be
the evaluation of the effects of a multi-channel blocker such as
terfenadine on the shapes of the FP waveform. Furthermore, since this
was the first time that these waveform changes have been successfully
recorded through a 0.1-Hz HPF, a quantitative analytical method to as-
sess these changes is now needed. Thus, since a high HPF frequency
may lead tomisinterpretation of drug effect, and a lower HPF frequency
can be used to clearly record various changes in the waveform between
the first and second peaks, especially slow component changes, HPF
frequency is clearly an important factor to take into consideration
when accurately evaluating drug effects using an MEA system. There-
fore, we recommend that a 0.1-Hz HPF be used when recording FP
waveforms of human iPS-derived cardiomyocytes.

4.3. Effect of acquisition conditions on FP waveform

Although the plating of cells at low density (b3750 cells/probe) has
been reported to alter both the response to hERG inhibitors and the IKs
current due to the reduction in the expression of IKs and IK1 channels,
higher densities (7500–30,000 cells/probe) have been shown to not
alter cellular sensitivity to these inhibitors (Uesugi, Ojima, Taniguchi,
Miyamoto, & Sawada, 2014). The present results were consistent
with these previous findings in that there were no changes in the
d analysis methods inmulti-electrode array experiments with iPS cell-
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concentration–response curves for E-4031 when cells were plated at
densities of 15,000, 20,000, or 25,000 cells/well. However, the ampli-
tude of the first and second peaks did tend to increase as cell density in-
creased. One possible explanation for this is that cell density affects the
relationship between the cardiomyocyte cell membrane and the elec-
trode surface. At higher cell densities, the distance between the cell
membrane and the electrode surface is likely to be closer and therefore
cleft resistance higher, whichwould result in a higher voltage signal and
more accurate FP waveforms. Furthermore, plating cells at high density
may cause layering of the cells on the electrodes, producing tighter cell-
to-electrode and cell-to-cell seals in proportion to cell plating density.
Other factors such as cell-adhesionmolecules activity, electrode surface
composition, and coating reagent type (e.g., fibronectin)may also affect
the relationship between cardiomyocytes and the electrode surface.

In the present study, the experimental conditions, including experi-
menters, cell type, cell lot, fibronectinmaker, fibronectin lot, and exper-
iment day were the kept the same. Seeding cells at a density of 15,000,
20,000, or 25,000 cells/well did not affect drug responses when the FP
waveform on the MEA electrodes was selected for analysis according
to our criteria. Our observations, together with the influence of the
seeding cell densities reported previously (Nakamura et al., 2014;
Uesugi et al., 2014), suggest that higher densities of cardiomyocytes
and identical experimental conditions, especially for validation studies
in which multiple facilities participate, should be used in MEA-based
experiments.

4.4. Relationship between FP and AP

Since FP signals are derived from the relationship between the
cardiomyocyte cell membrane and the electrode surface, and are not a
direct measure of membrane current or AP, FP waveforms can be diffi-
cult to interpret. Although a liner relationship between APD and FPD
has been implicated in mouse cardiomyocytes (Halbach, Egert,
Hescheler, & Banach, 2003), to further understand the relationship be-
tween FP and AP, we simultaneously recorded AP and FP waveforms
(Fig. 5C). The first peak of the FP waveform closely corresponded to
the initial upstroke of the AP waveform, indicating the likely contribu-
tion of Na+ channels to the first peak in the FP waveform. The second
peak of the FP waveform occurred roughly at the beginning of the
later repolarization phase of the AP waveform, and FPD corresponded
to APD50 under basal conditions (Fig. 5B), suggesting the contribution
of IKr or IKs (slow component of delayed rectifier K+ current), or both,
to the current. The plateau phase of the AP waveform corresponded to
the negative phase between the first and second peaks of the FP wave-
form, suggesting that the amplitude of the negative plateau potential
was associated with the influx of calcium ions. Furthermore, the occur-
rence of EAD and TA in the FPwaveform,whichwas induced by E-4031,
was also reflected in the AP waveform (Fig. 5C). Together these results
suggest that the analysis of the effects of drug candidates on ionic
currents and proarrhythmic potential would be greatly enhanced by
using a combination of FP and AP data.

4.5. Limitations of FPD evaluation and future steps

Although the recording of FP with an MEA-based system is a useful
method, our results suggest that changes in the FP waveform do not
accurately reflect the drug effect when the second peak in the FP wave-
form is greatly reduced by the presence of a drug. The effect of the HPF is
a further concern in the analysis of FP. Thus, despite thepotential advan-
tages of evaluating FPD by using an MEA-based system for the electro-
physiological characterization of the effect of drugs on iPS cell-derived
cardiomyocytes, careful attention should be paid to the data analysis
with regard to alteration of the FP waveform. These problems are ex-
pected to be addressed as improvements are made to MEA systems
(Spira & Hai, 2013), and the combination of other evaluation methods
and systems such as motion vector prediction (Hayakawa et al., 2014),
Please cite this article as: Asakura, K., et al., Improvement of acquisition an
derived cardiomyocytes, Journal of Pharmacological and Toxicological Meth
calcium imaging, and electrical impedance together with the MEA sys-
tem (Peters, Lamore, Guo, Scott, & Kolaja, 2015) are expected to produce
more accurate drug evaluations.
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Appendix 1. Electrical circuit of the cardiomyocyte
sheet–electrode interface

The extracellular FP originates from changes in ion concentration in
the cleft between cells that are a result of the activation of ion channels
in the plasma membrane. When cleft resistance (Rseal in Fig. 1A) is
high, for example when there is tight association between a cardiomyo-
cyte cell membrane and an electrode, the difference in ionic concentra-
tion between the cleft and bulk solution will give rise to a potential
difference that can be detected by the electrode. Therefore, ideally, the
FP signal represents the total membrane current producing the change
in ionic concentration in the cleft (e.g., the FP waveform shown in
Fig. 2C, electrode No. 4). Signal amplitude is greater when the volume
of the cleft is smaller, due to better seal formation between the cellmem-
brane and electrodes.When the resistance in the cleft (Rseal) is extremely
high or when the resistance in the cell membrane (Rj) is decreased, the
voltage in the cleft will be affected by the intracellular voltage and may
possibly represent the intracellular voltage. An example of this is the phe-
nomenon where the production of an AP-like waveform is induced by
application of strong biphasic electrical pulses to the bipolar electrodes
that make the plasma membrane slightly leaky, as shown in Fig. 1C,
which decreases the plasma membrane resistance (Spira & Hai, 2013).

In the present study, there was a large degree of variation in the
waveforms recorded by the individual electrodes in the array, suggest-
ing that the optimal configuration of the cell membrane and electrodes
was not always established, or that mixed FP and AP signals were re-
corded by many of the electrodes (Fig. 2A). Movement by the contrac-
tion of the cardiomyocytes may also affect the shape of the waveform
recorded by altering the spatial relationship between cell membrane
and electrode.

Appendix 2. Effect of HPF frequency on FP waveform

In the present study, MEA electrodes were used to detect changes in
extracellular potential, which reflect the depolarization andhyperpolar-
izing of the cardiomyocyte cell membrane. Currents flowing into
cells were detected as negative voltages and currents flowing out of
cells were detected as positive currents. A major portion of these
currents are a result of Na+, K+, and Ca2+ ions flowing through ion
channels in the cell membrane and their compensating capacitive
currents. The ionic currents in the cardiomyocyte cell membrane vary
from the very fast INa current to the slow IKr and IKs currents. Therefore,
the frequency of the HPF is important for acquiring accurate FP wave-
form data. Fast currents such as INa underlying the first peak in the FP
d analysis methods inmulti-electrode array experiments with iPS cell-
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waveform, which peaks within 1 msec from the voltage clamp experi-
ment of the INa current in iPS-derived cardiac cells (Ma et al., 2011)
will be influenced by a low-pass filter set below 1000 Hz. In contrast,
the slow currents such as IKr and IKs underlying the second peak will
be influencedmore by a HPF (Figs. 2 and 3). In themeasurement of bio-
electrical signals, HPFs are generally used to eliminate the very-low-
frequency component that causes the electrical signal to drift. HPFs
are generally implemented as a resistance–capacitor circuit, in which,
the current (I) that flows through a capacitor (C) with resistance (R),
input voltage (Vi), and output voltage (Vo), can be expressed as follows:

I ¼ C � d Vi−Voð Þ
dt

:

From Ohm's law (V = I · R), therefore

Vo ¼ R·C � d Vi−Voð Þ
dt

;

and

1þ R·C � d
dt

� �
Vo ¼ R·C � dVi

dt
:

Since voltage becomes approximately constant over time (t)
when the change of voltage signals are far lower than the lower cutoff
frequency,

dVo

dt
¼ 0:

Therefore,

Vo ¼ R·C � dVi

dt
:

Thus, Vo will be differentiated compared with Vi through the resis-
tance–capacitor circuit.

In addition, the output voltage when a sine wave is input to a differ-
entiation circuit can be expressed as

Vo ¼
d Við Þ
dt

¼ d sin 2π·f ·tð Þð Þ
dt

¼ 2π·f · cos 2π·f ·tð Þ:
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